Ushbu maqolada didaktik o‘yinlarning bolalar rivojlanishidagi ahamiyati yoritilgan. Xususan, o‘yinlar orqali bolalarning bilish faoliyati, nutqi, tafakkuri, xotirasi va emotsional salohiyati qanday shakllanishi tahlil etilgan. Maqolada turli yosh guruhlariga mos didaktik o‘yin turlari, ularning pedagogik maqsadlari va samaralari misollar bilan asoslab berilgan. Shuningdek, zamonaviy texnologiyalarga asoslangan interaktiv o‘yinlarning ta’limdagi o‘rni va natijadorligi amaliy tajribalar asosida ko‘rsatib o‘tilgan.
В статье рассматриваются современные интерактивные технологии, применяемые на уроках русского языка как иностранного, а также их влияние на эффективность обучения. Проанализированы возможности повышения мотивации и активности учащихся, улучшения коммуникативных навыков с помощью цифровых инструментов. Определены перспективы интеграции инновационных методов в учебный процесс.
Ushbu maqolada huquqiy siyosat tushunchasi hamda uning tahlili, davlat huquqiy siyosatining transformatsiya tushunchasining mazmuni, mohiyati, sabablari hamda uning oqibatlari, transformatsiya jarayonining bosqichlari, shuningdek, davlat huquqiy siyosatining transformatsiyasi O‘zbekiston misolida tahlil qilinadi.
This paper focuses on the selection and justification of deep learning models for emotion classification tasks. It provides a comprehensive analysis of various neural network architectures, including Convolutional Neural Networks, Recurrent Neural Networks, Long Short-Term Memory networks, and Transformer models, assessing their performance in recognizing and classifying human emotions from multimodal data sources. The study examines the strengths and limitations of each model with respect to data type, training efficiency, computational complexity, and generalization capabilities. Furthermore, criteria for optimal model selection tailored to real-world emotion recognition applications are discussed. The findings contribute to enhancing the accuracy and robustness of emotion classification systems and offer valuable guidelines for researchers and practitioners developing advanced affective computing solutions.