INDUSTRIAL WASTE MANAGEMENT RESEARCH: A QUANTITATIVE BIBLIOMETRIC EXPLORATION

Gulayim Saburova Yedilbay qizi

Tashkent State University of Economics.

sabuurova@gmail.com.

https://doi.org/10.5281/zenodo.15677908

Abstract. The persistent generation and improper management of industrial waste, coupled with resource depletion and environmental degradation, pose significant challenges to achieving sustainability in human life. The burden associated with industrial waste intensifies both ecological and public health risks. Effective industrial waste management requires a thorough understanding of its sources and geographical distribution. In this study, we conducted a bibliometric analysis of English-language publications from the past decade indexed in the Dimensions database, using the keyword "industrial waste management." The analysis focused on publication trends, leading journals, academic impact metrics such as total citations, Field Citation Ratio (FCR), and Relative Citation Ratio (RCR), as well as identifying the most cited articles and their alignment with the United Nations Sustainable Development Goals (SDGs).

INTRODUCTION

Waste is a material pertaining to the denied, declined, discarded mass and undesirable extra volume, which is created by various human caused and/or natural processes [1]. It may be classified into numerous groups based on their source of creation, harmful assets, management approaches, and degrading features. Figure 1 illustrates waste types based on different categories

Figure 1. Types of waste by categories

Many of industries produce waste in order to meet the technological growth and satisfy human request. Industrial waste is defined as any solid, semisolid, or liquid that presents a considerable danger to people and the environment owing to its acidity and dangerous elements [2]. For instance, untreated garbage transfers poisonous and dangerous elements into the environment, which acts as an ideal environment for pathogenic bacteria, posing serious health risks [3]. Although, according to [4] industrial activities are extremely significant in view of fundamental changes in the human actions of an economic system. The fast expansion of industry has resulted to a rise in the production of contaminated trash [5]. As an example, the electrical appliances production is known to generate enormous volumes of trash containing heavy metals [6]. Additionally, [7] mentioned that sludge has been considered as one of the most hard to manage due to its low solubility and high concentration of hazardous heavy metals.

In recent years, industrial waste management has become increasingly urgent in emerging countries due to economic growth, and the acceleration of consumption has caused an expansion in waste generation [8]. Poor waste management has polluted the world's water bodies, clogged sewers, caused flooding, and spread illnesses through vector breeding [9]. Also, it promotes increases in breathing concerns through particles in the air arising from garbage combustion, damage to species that feed waste unwittingly, and impacts on economic fall, such as lower tourism [10].

Many studies have been conducted to identify sustainable decision-making models to analyze industrial waste management solutions, such as life-cycle assessment (LCA), costbenefit analysis, and multi-criteria decision analysis (MCDA) [11]. According to [12] life cycle assessment (LCA) will help the decision-maker select a suitable control strategy that has the least environmental impact. As [13] reported multi-criteria decision analyses was suitable for assessing the sustainability industrial waste management system. Furthermore, the United Nations Sustainable Development Goals (SDGs) 11 and 12 emphasize the sustainable management of industrial waste as well as recycling for the reuse of end-of-life (waste) materials as possible secondary resources [14].

This study aims at examining the most popular journals and cited articles, scientific production output, academic impacts of published papers.

MATERIAL AND METHOD

This paper aims to provide bibliometric and literature analyses in order to explore industrial waste management research globally. To extract the articles on the subject offered above, a keyword "industrial waste management" was searched from Dimensions database on May, 30 of 2024. Article search period included 2015-2024 years and limited by language "English". Only open access and final published research articles were selected and database consisting of 160 papers was exported to a CSV file for further analyses on industrial waste management. Then, a database was categorized including the year of publication, academic impacts, source title. Figure 2 demonstrates the flow of the selected methodology for the research.

FIGURE 1. Methodology flowchart for the research

RESULTS Scientific Production Analyses

A total of 160 articles on industrial waste management were published globally for the last 10 years (Figure 2). 2015 and 2016 were recognized as lowest production periods in the selected research contributing only 5 published papers each year. However, it was found that 2017 and 2019 had arisen almost three times with 14 articles, respectively. The highest point of scientific research output was 2021 with 45 (28%) published articles. The trend is going down from 2022 still today. As this analysis was carried out on May, 2024, it is possible to predict that current year scientific production output will have higher results than previous two years.

FIGURE. 2. Annual scientific production Most Relevant Journals On Industrial Waste Management

Choosing the correct publisher is essential during the publication process. Dimensions based 160 papers on industrial waste management issue were distributed among 10 different journals between 2015-2024 (Table 1). Key journals on industrial waste management are "The Science of Th Total Environment", "Chemosphere" and "Journal of Cleaner Production" which contributed almost half of total published papers.

TITELE IT Liet of the top Journal on manufacture management								
Source title	Number	Source title	Number					
The Science of The Total	35	Environmental Research	13					
Environment								
Chemosphere	20	Environmental Pollution	13					
Journal of Cleaner Production	20	International Journal of Hydrogen	10					
		Production						
Renewable and Sustainable	18	Energy	10					
Energy Review								
Journal of Hazardous Materials	15	Energy Conversion and Management	6					

TABLE 1. List of the top journals on industrial waste management

Academic impact of published papers on industrial waste management

Well-known that academic impact is an important topic in the research world. It is often quantified using bibliometrics and citation counts, and it contributes to a researcher's h-index. This study investigated citation count, field citation ratio and relative citation ratio.

International scientific journal «MODERN SCIENCE AND RESEARCH» VOLUME 4/ISSUE 6/UIF:8.2/MODERNSCIENCE.UZ

Total number of citations of 160 published papers on industrial waste management was 14431 having the top in 2023 (Fig. 3). The Field Citation Ratio (FCR) measures a publication's relative citation effectiveness when compared to similarly dated publications related to its topic area (Fig. 4). FCR for research period equals 12.72. The Relative Citation Ratio (RCR) measures a publication's relative citation effectiveness as compared to other papers in the same field (Fig. 5). RCR is 6.27 for the last 10 years.

FIGURE 3. Citation distribution by the years

FIGURE 4. Field citation ratio

FIGURE 5. Relative citation ratio Top Cited Papers On Industrial Waste Management

ISSN: 2181-3906 2025

The number of citations indicates the quality and innovation of the research. Table 2 lists the ten most referenced publications on industrial waste management, along with their citation numbers, journals, year, relevance to Sustainable Development Goals.

N⁰	Title	Cita	Journal	Year	Sustainable
• •=		tion			development goals
			International		11 Sustainable Cities and
			Journal of		Communities; 13 Climate
	Advances in stationary and		Hydrogen		Action; 7 Affordable and
1	portable fuel cell applications	427	Energy	2016	Clean Energy
2	Microplastics as pollutants in		Environmental		
	agricultural soils	410	Pollution	2020	2 Zero Hunger
3			Renewable and		
	Recent advances in carbon		Sustainable		13 Climate Action; 15
	dioxide utilization	407	Energy Reviews	2020	Life on Land
4	Environmental fate, toxicity				
	and risk management				
	strategies of nanoplastics in		Journal of		
	the environment: Current		Hazardous		
	status and future perspectives	376	Materials	2020	14 Life Below Water
5	A critical review on effects,				
	tolerance mechanisms and				
	management of cadmium in				
	vegetables	364	Chemosphere	2017	2 Zero Hunger
6	Comprehensive investigation				
	on hydrogen and fuel cell		Renewable and		13 Climate Action; 7
	technology in the aviation and		Sustainable		Affordable and Clean
	aerospace sectors	348	Energy Reviews	2019	Energy
7			International		
	Developments of electric cars		Journal of		13 Climate Action; 7
	and fuel cell hydrogen electric		Hydrogen		Affordable and Clean
	cars	346	Energy	2017	Energy
8	Biorenewable hydrogen				
	production through biomass				
	gasification: A review and	221	Environmental		7 Affordable and Clean
	future prospects	321	Research	2020	Energy
9	Cadmium phytoremediation		The Science of		
	potential of Brassica crop	201	The Total	2010	
	species: A review	296	Environment	2018	

VOLUME 4 / ISSUE 6 / UIF:8.2 / MODERNSCIENCE.UZ

10			The Science of		
	Outlook of carbon capture		The Total		
	technology and challenges	295	Environment	2018	13 Climate Action

CONCLUSION

This study presents a bibliometric analysis of 160 scientific publications to evaluate the current landscape of research in the field of industrial waste management. The findings indicate that the volume of research output in this area remains relatively limited, reflecting its developmental stage. Utilizing data from the Dimensions database, we examined publication trends over the past decade and identified the leading journals publishing on this topic. Furthermore, we assessed the academic influence of the selected works through key metrics, including total citation count (14,331), Field Citation Ratio (12.72), and Relative Citation Ratio (6.27). The most highly cited articles were further analyzed to determine their contribution and relevance to the United Nations Sustainable Development Goals (SDGs).

REFERENCES

- 1. R.R. Srivastava, D.K. Rajak, S. Ilyas, H. Kim, and P. Pathak, Minerals 13, 51 (2022).
- 2. C.-H. Tsai, Y.-H. Shen, and W.-T. Tsai, Sustainability 13, 9410 (2021).
- 3. P. Sharma, V.K. Gaur, S. Gupta, S. Varjani, A. Pandey, E. Gnansounou, S. You, H.H. Ngo, and J.W.C. Wong, Science of The Total Environment **811**, 152357 (2021).
- 4. Z. Zhangqi, C. Zhuli, and H. Lingyun, Technovation 110, 102350 (2022).
- V. Gunarathne, A.U. Rajapaksha, M. Vithanage, N. Adassooriya, A. Cooray, S. Liyanage, B. Athapattu, N. Rajakaruna, A.D. Igalavithana, D. Hou, D.S. Alessi, and Y.S. Ok, Science of The Total Environment 696, 133922 (2019).
- 6. Md.S. Hossain, S.M.Z.F. Al-Hamadani, and Md.T. Rahman, Journal of Health and Pollution 5, 3 (2015).
- 7. A. Ghorpade and M.M. Ahammed, Environmental Engineering Research 23, 92 (2017).
- 8. N.H. Hoang and C. Fogarassy, Sustainability 12, 1085 (2020).
- 9. Kaza and Slipa, *What a Waste: A Global Review of Solid Waste Management* (World Bank Group, 2018), p. 2048.
- 10. D. Hoornweg and P. Bhada-Tata, *What a Waste: A Global Review of Solid Waste Management* (World Bank Group, 2012), p. 2048.
- B. Milutinović, G. Stefanović, M. Dassisti, D. Marković, and G. Vučković, Energy 74, 190 (2014).
- 12. H. Khandelwal, H. Dhar, A.K. Thalla, and S. Kumar, Journal of Cleaner Production **209**, 630 (2019).
- 13. A.J. Morrissey and J. Browne, Waste Management 24, 297 (2004).
- 14. United Nations, (2024).