## International scientific journal «MODERN SCIENCE AND RESEARCH» VOLUME 4/ISSUE 10/UIF:8.2/MODERNSCIENCE.UZ

### ФИЗИОЛОГИЯ ЖЕЛЕЗ ВНУТРЕННЕЙ СЕКРЕЦИИ. ГИПОТАЛАМО-ГИПОФИЗАРНАЯ СИСТЕМА. ЩИТОВИДНАЯ И ПАРАЩИТОВИДНЫЕ ЖЕЛЕЗЫ. НАДПОЧЕЧНИКИ

### Эргашева Хадича Икромжон кизи Оразбаева Шахноза Рахат кизи Ходжашева Саидахон Анварбек кизи

Ташкентский государственный медицинский университет 2- лечебный факультет 205 группа.

https://doi.org/10.5281/zenodo.17458131

Аннотация. В статье рассматриваются основные физиологические механизмы деятельности желез внутренней секреции, их роль в поддержании гомеостаза и регуляции обменных процессов организма. Особое внимание уделено гипоталамогипофизарной системе как центральному звену нейроэндокринной регуляции, а также строению и функциям щитовидной, паращитовидных желез и надпочечников. Описаны гормоны, их биологическое действие и взаимосвязь между различными уровнями эндокринной системы.

**Ключевые слова:** эндокринная система, гипоталамус, гипофиз, щитовидная железа, паращитовидные железы, надпочечники, гормоны, гомеостаз.

### PHYSIOLOGY OF THE ENDOCRINE GLANDS. HYPOTHALAMIC-PITUITARY SYSTEM. THYROID AND PARATHYROID GLANDS. ADRENAL GLANDS

Abstract. This article examines the fundamental physiological mechanisms of endocrine gland function, their role in maintaining homeostasis and regulating metabolic processes in the body. Particular attention is paid to the hypothalamic-pituitary system as the central link in neuroendocrine regulation, as well as the structure and functions of the thyroid, parathyroid, and adrenal glands. Hormones, their biological effects, and the relationships between the various levels of the endocrine system are described.

**Keywords:** endocrine system, hypothalamus, pituitary gland, thyroid gland, parathyroid glands, adrenal glands, hormones, homeostasis.

Эндокринная система представляет собой совокупность желез внутренней секреции, которые выделяют гормоны непосредственно в кровь и регулируют все виды обмена веществ, рост, развитие, репродуктивные функции и адаптационные реакции организма. Главная особенность этой системы заключается в её тесной связи с нервной системой, образуя единую нейроэндокринную регуляторную сеть.

Центральное место в регуляции эндокринных функций занимает гипоталамогипофизарная система, которая обеспечивает координацию между центральной нервной системой и периферическими железами внутренней секреции. Нарушения в её работе могут привести к серьёзным патологиям, затрагивающим все уровни обменных процессов.

Гипоталамус является высшим центром эндокринной регуляции. Он расположен в промежуточном мозге и содержит нейросекреторные клетки, способные синтезировать нейрогормоны. Эти вещества, поступая в гипофиз по системе портальных сосудов, регулируют секрецию его гормонов.

## International scientific journal «MODERN SCIENCE AND RESEARCH» VOLUME 4/ISSUE 10/UIF:8.2/MODERNSCIENCE.UZ

Гипофиз подразделяется на переднюю (аденогипофиз) и заднюю (нейрогипофиз) доли. Аденогипофиз вырабатывает тропные гормоны: тиреотропный  $(TT\Gamma),$ адренокортикотропный  $(AKT\Gamma),$ соматотропный  $(CT\Gamma),$ фолликулостимулирующий регулируют  $(\Phi C\Gamma)$ , лютеинизирующий  $(\Pi\Gamma)$ И пролактин. Они деятельность периферических эндокринных желез. Нейрогипофиз выделяет вазопрессин (антидиуретический гормон) и окситоцин, которые синтезируются в гипоталамусе и транспортируются по аксонам в гипофиз.

Регуляция осуществляется по принципу обратной связи: повышение уровня гормонов периферических желез снижает секрецию соответствующих тропных гормонов гипофиза и рилизинг-факторов гипоталамуса.

Щитовидная железа — одна из крупнейших эндокринных желез, расположенная на передней поверхности шеи. Она синтезирует гормоны тироксин (Т4) и трийодтиронин (Т3), которые содержат йод и оказывают многогранное влияние на обмен веществ.

стимуляция основного обмена и потребления кислорода тканями;

регуляция роста и развития, особенно нервной системы у детей;

влияние на сердечно-сосудистую систему (повышение ЧСС, усиление сердечного выброса);

участие в регуляции белкового, жирового и углеводного обмена.

Секреция тиреоидных гормонов регулируется тиреотропным гормоном гипофиза.

При его избытке развивается гипертиреоз (болезнь Базедова), при недостатке — гипотиреоз, сопровождающийся снижением обмена и психической активности.

Паращитовидные железы (обычно четыре) расположены на задней поверхности щитовидной железы. Их основным гормоном является паратгормон (ПТГ), регулирующий обмен кальция и фосфора в организме.

повышение концентрации кальция в крови за счёт стимуляции его выхода из костей;

усиление реабсорбции кальция и выведения фосфатов почками;

активация синтеза кальцитриола в почках, что увеличивает всасывание кальция в кишечнике.

Антагонистом паратгормона является кальцитонин, который выделяется клетками щитовидной железы и способствует снижению уровня кальция в плазме. Нарушения секреции ПТГ вызывают тетанию (при гипопаратиреозе) или деминерализацию костей (при гиперпаратиреозе).

Надпочечники — парные железы, расположенные над верхними полюсами почек.

Они состоят из двух функционально различных частей: коркового и мозгового слоя. Корковое вещество выделяет три основные группы стероидных гормонов: минералокортикоиды (альдостерон) — регулируют водно-солевой баланс, повышая реабсорбцию натрия и выведение калия; глюкокортикоиды (кортизол) — влияют на обмен углеводов, белков и жиров, обладают противовоспалительным действием;андрогены коры надпочечников — обеспечивают развитие вторичных половых признаков.

Мозговое вещество секретирует адреналин и норадреналин, которые участвуют в реакции «борьбы или бегства», повышая артериальное давление, частоту сердечных

# International scientific journal «MODERN SCIENCE AND RESEARCH» VOLUME 4/ISSUE 10/UIF:8.2/MODERNSCIENCE.UZ

сокращений и уровень глюкозы в крови. Регуляция функции надпочечников осуществляется через гипоталамо-гипофизарную систему (АКТГ) и симпатическую нервную систему.

Эндокринная система представляет собой сложную сеть взаимодействующих органов, обеспечивающих постоянство внутренней среды и адаптацию организма к изменяющимся условиям. Гипоталамо-гипофизарная система играет ключевую роль в координации деятельности всех эндокринных желез. Щитовидная, паращитовидные железы и надпочечники обеспечивают регуляцию метаболизма, минерального обмена и стрессовых реакций. Нарушения на любом уровне этой системы приводят к серьёзным функциональным расстройствам, что подчёркивает важность изучения её физиологии для медицины и биологии.

#### Список литературы

- 1. Гайтон А. К., Холл Дж. Э. Медицинская физиология. М.: Логосфера, 2020. С. 512–518.
- 2. Крыжановский Г. Н. Физиология человека. М.: Медицина, 2019. С. 215–222.
- 3. Сапин М. Р., Никитюк Д. Б. Анатомия и физиология человека. М.: Академия, 2021. С. 331–338.
- 4. Шмидт Р., Тевс Г. Физиология человека. СПб.: Питер, 2022. С. 122–128.
- 5. Соколова Е. В. Гормональная регуляция обмена веществ. Казань: МедПресс, 2018. С. 58–62.
- 6. Быстров А. В. Основы эндокринологии. М.: ГЭОТАР-Медиа, 2017. С. 85–90.
- 7. Гармонова Л. С. Тиреоидные гормоны и их функции. Новосибирск: СибГМУ, 2020. С. 44–50.
- 8. Орлов Ю. П. Эндокринная физиология. СПб.: Hayka, 2016. C. 208–213.
- 9. Жданов И. А. Минеральный обмен и его регуляция. Минск: БГУ, 2018. С. 141-147.
- 10. Попов В. Н. Физиология человека и животных. М.: Академия, 2019. С. 300—308.
- 11. Иванов С. А. Гормоны стресса и адаптация организма. М.: МЕДпресс-информ, 2021. С. 365–370.
- 12. Филиппов В. Г. Общая физиология эндокринной системы. Томск: Изд-во ТГУ, 2020. С. 409–415.
- 13. Смирнова О. Л. Регуляция гомеостаза у человека. СПб.: Питер, 2018. С. 93–99.
- 14. Козлов Н. В. Современные представления об эндокринной регуляции. Екатеринбург: УрФУ, 2021. С. 250–256.
- 15. Литвинова Е. Ю. Нейроэндокринные механизмы адаптации. М.: Наука, 2019. С. 177–183.